Acids and Bases

Properties

Acids

- Taste sour
- React with metals to produce hydrogen gas

Bases

- Taster bitter
- Feel slippery

Indicators

 Indicators allow us to determine whether a substance is an acid or a base.

- Litmus Paper
 - Red = Acid
 - Blue = Base

Blue and Red litmus papers – Kanesskong (<u>CC BY-SA 4.0</u>)

- Phenolphthalein
 - Clear = Acid
 - Pink = Base

Phenolphthalein at pH of 9 (public domain)

- Bromthymol Blue
 - Yellow = Acid
 - Blue = Base

Bromthymol blue – Xato (<u>CC BY-SA 3.0</u>)

- Universal Indicator
 - Color depends on how acidic or basic a solution is.

Pack of litmus test paper and color samples – Coprid (Adobe Stock)

pН

- Water has an equal number of H⁺ and OH⁻ ions.
 - Water is neutral.
- When an acid is dissolved in water it releases H⁺ ions (increasing the overall number of H⁺ ions).
- If the number of H⁺ ions is greater than the number of OH⁻ ions, the solution is acidic.
- The more H⁺ ions, the stronger the acid.

- When a base is dissolved in water, it releases OH⁻ ions (increasing the overall number of OH⁻ ions in the water).
- If the number of OH⁻ ions is greater than the number of H⁺ ions, the solution is basic.
- The more OH⁻ ions, the stronger the base.

koray (Adobe Stock)

- The pH (power of hydrogen) of a solution is calculated from the number of H⁺ ions in the solution.
 - It is, therefore, a value that represents how acidic or basic a solution is.
- The range of pH values (scale) is 0 to 14.
- Acids have a pH < 7.
- Bases have a pH > 7.
- A neutral substance (neither an acid nor base) has a pH of 7.

The pH Scale

Acids and Bases in Industry and in Daily Life

Car – Bruce Emmerling (Pixabay) Pills – moritz320 (Pixabay) Soap – Marc Pascual (Pixabay) Tums – Brett Hondow (Pixabay)

- hydrochloric acid, HCI
 - stomach acid; used in cleaning (refining) metals; maintenance of swimming pools; household cleaning
- sulfuric acid, H₂SO₄
 - car batteries; manufacture of fertilizers and many other commercial products
- nitric acid, HNO₃
 - manufacture of fertilizers, explosives; extraction of gold
- acetic acid, HC₂H₃O₂
 - vinegar

- carbonic acid, H₂CO₃
 - carbonated drinks
- citric acid, C₆H₈O₇
 - food; dietary supplements; creams, gels, liquids, and lotions.
- acetylsalicylic acid, C₆H₄(OCOCH₃)CO₂H
 - aspirin

- sodium hydroxide, NaOH
 - soaps and detergents; oven and drain cleaners
- potassium hydroxide, KOH
 - liquid soaps and soft soaps; alkaline batteries
- magnesium hydroxide, Mg(OH)₂
 - Iaxatives, antacids, and deodorants; used in the neutralization of acidic wastewater
- calcium hydroxide, Ca(OH)₂
 - antacids; manufacture of cement and lime water; added to neutralize acidic soil.

- aluminum hydroxide, Al(OH)₃
 - water purification; antacids
- ammonia, NH₃
 - Used as a building block for the synthesis of many pharmaceutical products; cleaning products; manufacture of fertilizers

Neutralization Reaction

- The reaction between an acid and a base is a special kind of double displacement reaction called **neutralization**.
- An acid and base react together to form a salt and water.
 - A salt is an ionic solid consisting of a positive ion (other than hydrogen) and a negative ion (other than hydroxide).

Acid + Base \rightarrow Salt + Water

Examples:

HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(ℓ) 2HCl(aq) + Ca(OH)₂(aq) → CaCl₂(aq) + 2H₂O(ℓ)