
\qquad
\qquad

\qquad

Properties	
Acids - Taste sour - React with metals to produce hydrogen gas	Bases - Taster bitter - Feel slippery

Indicators

- Indicators allow us to determine whether a substance is an acid or a base.

\qquad
- Bromthymol Blue
- Universal Indicator
- Yellow = Acid
- Color depends on how acidic or basic a solution is. \qquad

pH

- Water has an equal number of H^{+}and OH^{-} \qquad ions.
- Water is neutral.
- When an acid is dissolved in water it releases H^{+}ions (increasing the overall number of H^{+}ions).
- If the number of H^{+}ions is greater than the number of OH^{-}ions, the solution is acidic. \qquad
- The more H^{+}ions, the stronger the acid.
- When a base is dissolved in water, it releases OH^{-}ions (increasing the overall number of OH^{-}ions in the water).
- If the number of OH^{-}ions is greater than the number of H^{+}ions, the solution is basic.
- The more OH^{-}ions, the stronger the base.
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
- The pH (power of hydrogen) of a solution is calculated from the number of H^{+}ions in the solution.
- It is, therefore, a value that represents how acidic or basic a solution is.
- The range of pH values (scale) is 0 to 14 .
- Acids have a $\mathrm{pH}<7$.
- Bases have a $\mathrm{pH}>7$.
- A neutral substance (neither an acid nor base) has a pH of 7 .

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- hydrochloric acid, HCl
- stomach acid; used in cleaning (refining) metals; maintenance of swimming pools; household cleaning
- sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$
- car batteries; manufacture of fertilizers and many other commercial products
- nitric acid, HNO_{3}
- manufacture of fertilizers, explosives; extraction of gold
- acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ \qquad
- vinegar
- carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$
- carbonated drinks
- citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$
- food; dietary supplements; creams, gels, liquids, and lotions.
- acetylsalicylic acid, $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{OCOCH}_{3}\right) \mathrm{CO}_{2} \mathrm{H}$
- aspirin
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- sodium hydroxide, NaOH
- soaps and detergents; oven and drain cleaners
- potassium hydroxide, KOH
- liquid soaps and soft soaps; alkaline batteries
\qquad
\qquad
magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$
- laxatives, antacids, and deodorants; used in
\qquad the neutralization of acidic wastewater
- calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$ \qquad
- antacids; manufacture of cement and lime water; added to neutralize acidic soil. \qquad
\qquad
- aluminum hydroxide, $\mathrm{Al}(\mathrm{OH})_{3}$
- water purification; antacids
- ammonia, NH_{3}
- Used as a building block for the synthesis of many pharmaceutical products; cleaning products; manufacture of fertilizers

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- The reaction between an acid and a base is a special kind of double displacement \qquad reaction called neutralization.
- An acid and base react together to form a salt and water.
- A salt is an ionic solid consisting of a positive ion (other than hydrogen) and a negative ion (other than hydroxide).
Acid + Base \rightarrow Salt + Water
Examples:
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$
$2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\boldsymbol{\ell})$

